可视化数据图表是什么意思 可视化图形 可视化数据图表网站

可视化数据图表是什么意思 可视化图形 可视化数据图表网站

可视化图形(10种常见的数据可视化图表)。

分析数据时,很多人有时不知道选择什么可视化技巧,往往会有疑问:“这么多图表,我们在正常职业中应该为选择什么来展现数据所表达的意义?”

的确,当我们处理和分析可视化数据时,这个难题确实存在,看似合适,但实际上并不合适。每种可视化技巧都有其独特的意义,因此用合适的图表实现数据可视化非常重要。

这篇文章小编将拓展资料图表的特点,拓展资料出一张思考导图,帮助大家更快地选择显示数据特点的图表类型。

1.直方图:显示多个类别的数据变化以及同一类别变量之间的比较。

适合

比较分类数据。

限制

太多的分类不能显示数据的特征。

类似图表:

1)堆叠直方图:比较同一类别变量之和与不同类别变量之差。

2)百分比堆直方图:适合显示同一类别各变量的比例。

2.条形图:类似于条形图,只是两个轴相反。

适合

类别名称太长,会有大量空白色的地方标注每个类别的名称。

限制

太多的分类不能显示数据的特征。

类似图表:

1)堆叠条形图:比较同一类别与不同类别变量之和的差异;2)百分比堆积条形图:适用于显示同一类别中各变量的比例;3)双向条形图:比较同一类别中正值和负值的差异。

3.折线图:显示数据随时刻或有序类别波动的动向变化。

适合

有序的类别,如时刻。

限制

无序的类别不能显示数据特征。

类似图表:

1)面积图:按面积显示数值。显示数量随时刻变化的动向。

2)堆积面积图:同类别变量与不同类别变量之和差3)百分比堆积面积图:比较同类别变量的比例差。

4.柱形图:结合直方图和折线图,在同一图表中显示数据。

适合

有序的类别,如时刻。

限制

无序的类别不能显示数据特征。

5.散点图:用于寻找变量之间的关系。

适合

数据点多,结局更准确,如回归分析。

限制

数据量少的时候,会比较混乱。

类似图表:

1)气泡图:用气泡代替散点图的数值点,面积代表数值。

6.饼图:用于显示各个类别的比例,如男女比例。

适合

了解数据的分布。

限制

如果分类太多,风扇会越小,图表不会显示。

类似图表:

1)环形图:dig 空饼图,中间区域可以显示数据或文字信息。

2)玫瑰蛋糕图:比较不同品类的数值。

3)旭日图:显示父子级不同类型数据的比例。

7.矩形树形图:显示同一层级不同品类的比例,也显示同一品类下孩子的比例,比如商品品类。

适合

显示父子层次结构比例的树数据。

限制

不适合显示不同层次的数据,比如组织结构图,每个类别也不适合放在一起看比例。

8.Word cloud:显示文本信息,视觉突出显示经常出现的“关键词”,如用户画像的标签。

适合

从大量文本中提取关键词。

限制

它不适用于数据太少或数据区分度很小的文本。

9.漏斗图:梯形区域用于表示某一环节业务量与前一环节的差异。

适合

流量固定、环节多的分析可以直接显示转化率和损失率。

限制

没有经过关系的无序类别或变量。

10.方框图:是用数据中的五个统计量来描述数据的技巧:最小值、第一个四分位数、中值、第三个四分位数和最大值。

适合

用于显示一组数据的离散度,尤其用于比较多少样本。

限制

对于大量的数据,反应的形状信息更加模糊。

有了以上10种可视化技巧,基本可以满足90%的职业需求,未雨绸缪!